บทความคัดสรรเดือนนี้
กระจุกดาวเปิด
จากวิกิพีเดีย สารานุกรมเสรี
กระจุกดาวเปิดที่มีอายุน้อยอาจยังคงอยู่ในกลุ่มเมฆโมเลกุลซึ่งมันก่อตัวขึ้นมา ส่องแสงและความร้อนจนสามารถสร้างบริเวณเอช 2 ขึ้นมาได้ เมื่อเวลาผ่านไป แรงดันของการแผ่รังสีจากกระจุกดาวจะทำให้เมฆโมเลกุลกระจัดกระจายออกไป โดยทั่วไปมวลของแก๊สในกลุ่มเมฆประมาณ 10% จะรวมเข้าอยู่ในดาวฤกษ์ก่อนที่แรงดันของการแผ่รังสีจะผลักพวกมันออกไปเสีย
กระจุกดาวเปิดเป็นวัตถุท้องฟ้าที่สำคัญมากในการศึกษาวิวัฒนาการของดวงดาว เพราะดาวฤกษ์ในกระจุกดาวเดียวกันจะมีอายุใกล้เคียงกันและมีลักษณะทางเคมี คล้ายคลึงกัน การศึกษาผลกระทบต่อตัวแปรอันละเอียดอ่อนต่างๆ ของคุณลักษณะของดวงดาวจึงทำได้ง่ายกว่าการศึกษาดาวฤกษ์เดี่ยวๆ
กระจุกดาวเปิดจำนวนหนึ่ง เช่น กระจุกดาวลูกไก่ กระจุกดาวสามเหลี่ยมหน้าวัว หรือ กระจุกดาวอัลฟาเพอร์เซย์ เป็นกระจุกดาวที่สามารถมองเห็นได้ด้วยตาเปล่า กระจุกดาวบางจำพวกเช่นกระจุกดาวแฝดจะมองเห็นได้ค่อนข้างยากหากไม่ใช้เครื่องมือช่วย ส่วนอื่นๆ ที่เหลือจะมองเห็นได้โดยใช้กล้องสองตาหรือกล้องโทรทรรศน์
เนื้อหา
ประวัติการสังเกตการณ์
กระจุกดาวเปิดที่มีชื่อเสียงมากที่สุด คือกระจุกดาวลูกไก่ เป็นที่รู้จักกันมาเนิ่นนานนับแต่โบราณว่าเป็นกลุ่มของดวงดาว ส่วนกระจุกดาวอื่นๆ จะเป็นที่รู้จักเพียงกลุ่มแสงฝ้าๆ บนฟ้าเท่านั้น กว่าจะเป็นที่ทราบกันว่ากลุ่มแสงฝ้าเหล่านั้นเป็นกลุ่มของดาวหลายดวง ก็เมื่อมีการคิดค้นกล้องโทรทรรศน์ขึ้นแล้ว การสังเกตการณ์ด้วยกล้องโทรทรรศน์ช่วยทำให้แยกแยะประเภทของกระจุกดาวสอง จำพวกออกจากกันได้ พวกหนึ่งคือกลุ่มของดาวฤกษ์หลายพันดวงที่มีการกระจายตัวกันแบบทรงกลมปกติ มักพบในบริเวณใกล้ศูนย์กลางของดาราจักรทางช้างเผือก อีกพวกหนึ่งมีดวงดาวรวมกันอยู่แบบกระจัดกระจาย ไม่มีรูปร่างที่แน่นอน มักพบในท้องฟ้าส่วนอื่นโดยทั่วไป นักดาราศาสตร์เรียกกระจุกดาวแบบแรกว่า กระจุกดาวทรงกลม และเรียกกระจุกดาวแบบหลังว่า กระจุกดาวเปิด ในบางครั้งอาจจะเรียกกระจุกดาวเปิดว่าเป็น กระจุกของดาราจักร เนื่องจากจะพบได้เพียงบนระนาบของดาราจักรทางช้างเผือกเท่านั้น ดังจะอธิบายต่อไปด้านล่างเป็นที่ทราบกันมานานก่อนหน้านี้แล้วว่า ดาวฤกษ์ที่อยู่ในกระจุกดาวเปิดกลุ่มเดียวกัน จะมีความสัมพันธ์กันในทางกายภาพ คุณพ่อจอห์น มิเชล ได้คำนวณไว้เมื่อปี ค.ศ. 1767 ว่า โอกาสที่ดาวฤกษ์ในกลุ่มเดียวกัน เช่นดาวฤกษ์ในกระจุกดาวลูกไก่ จะเป็นผลจากมุมมองการสังเกตโดยบังเอิญที่เห็นจากโลก ได้เพียง 1 ใน 496,000 ส่วนเท่านั้น[1] เมื่อวิชาดาราศาสตร์มีความแม่นยำมากยิ่งขึ้น ทำให้พบว่ากระจุกดาวฤกษ์มักจะมีการเคลื่อนที่เฉพาะผ่านห้วงอวกาศสอดคล้องไปในทางเดียวกัน ขณะที่การตรวจวัดสเปกตรัมก็พบว่าความเร็วเชิงรัศมีของ ดาวฤกษ์เหล่านั้นมีความสอดคล้องกัน แสดงว่าดาวฤกษ์ในกระจุกดาวเดียวกันเป็นดาวที่เกิดในเวลาเดียวกันและดึงดูด กันและกันเอาไว้เป็นกลุ่ม
แม้จะแบ่งกระจุกดาวออกเป็นสองพวก คือกระจุกดาวเปิดและกระจุกดาวทรงกลม แต่ในบางครั้งก็อาจไม่เห็นความแตกต่างมากนักระหว่างกระจุกดาวทรงกลมที่ค่อน ข้างกระจายตัว กับกระจุกดาวเปิดแบบที่ค่อนข้างหนาแน่น นักดาราศาสตร์บางคนเชื่อว่ากระจุกดาวทั้งสองประเภทนี้ก่อตัวขึ้นด้วยกลไก พื้นฐานที่เหมือนๆ กัน แตกต่างกันแต่เพียงเงื่อนไขที่ช่วยให้การก่อตัวของกระจุกดาวทรงกลมแบบหนา แน่น ที่มีดาวฤกษ์นับแสนๆ ดวงไม่อาจพบได้ในดาราจักรของเราเท่านั้น
การก่อตัว
การก่อตัวของกระจุกดาวเปิดเริ่มต้นขึ้นเมื่อมีการยุบตัวลงบางส่วนของเมฆโมเลกุลขนาด ยักษ์ กลุ่มเมฆแก๊สที่ทั้งเย็นและหนาแน่นนี้มีมวลเป็นหลายพันเท่าของมวลดวงอาทิตย์ มีปัจจัยมากมายที่อาจทำให้เมฆโมเลกุลเหล่านี้ยุบตัวลง (หรือยุบลงบางส่วน) หรือทำให้เกิดการระเบิดในระหว่างการกำเนิดของดาวฤกษ์ ซึ่งทำให้กลายเป็นกระจุกดาวเปิด ปัจจัยเหล่านั้นรวมถึงคลื่นกระแทกจากซูเปอร์โนวาใกล้ เคียงหรือจากปฏิกิริยาแรงโน้มถ่วง เมื่อเมฆโมเลกุลยักษ์เริ่มยุบตัวลง ดาวฤกษ์ก็เริ่มก่อตัวขึ้นระหว่างการแตกตัวของเมฆอย่างต่อเนื่องเป็นชิ้นส่วน ที่เล็กลงและเล็กลงเรื่อยๆ ผลที่ได้ทำให้เกิดเป็นดาวฤกษ์จำนวนนับพันดวง สำหรับในดาราจักรของเรา อัตราการก่อตัวของกระจุกดาวเปิดอยู่ที่ประมาณหนึ่งครั้งต่อทุกๆ เวลาไม่กี่พันปี[4]
ทันทีที่กระบวนการก่อตัวของดาวฤกษ์เริ่มขึ้น ดาวฤกษ์ที่มีมวลมากที่สุดและร้อนที่สุด (รู้จักในชื่อดาวโอบี) จะปลดปล่อยรังสีอัลตราไวโอเลตออกมาเป็นจำนวนมาก รังสีเหล่านี้ทำให้แก๊สในเมฆโมเลกุลยักษ์แตกตัวอย่างรวดเร็ว เกิดเป็นย่านที่เรียกว่า บริเวณเอช 2 ลมดาวฤกษ์จาก ดาวมวลมากเหล่านี้ร่วมกับแรงดันจากการแผ่รังสีจะผลักแก๊สออกไป หลังจากผ่านไปหลายล้านปีกระจุกดาวจะเริ่มประสบกับภาวะซูเปอร์โนวาเป็นครั้ง แรก ซึ่งจะทำให้สูญเสียแก๊สออกไปจากระบบดาวเช่นเดียวกัน เมื่อผ่านไปอีกหลายสิบล้านปีบริเวณกระจุกดาวก็จะไม่มีแก๊สและไม่มีการก่อตัว ของดาวฤกษ์ใหม่อีกต่อไป โดยทั่วไปแล้วมีแก๊สในบริเวณกระจุกดาวเพียง 10% เท่านั้นที่จะกลายสภาพมาเป็นดาวฤกษ์ ส่วนที่เหลือถูกไล่กระจายหายไปหมด[4]
ยังมีอีกมุมมองหนึ่งในกระบวนการก่อตัวของดาวฤกษ์ นั่นคือมันก่อตัวขึ้นอย่างรวดเร็วจากแกนกลางเมฆโมเลกุล ครั้นเมื่อดาวฤกษ์มวลมากเริ่มมีความสามารถส่องแสงได้ มันก็ไล่แก๊สที่เหลือในรูปแก๊สประจุร้อนออกไปด้วยความเร็วเสียง เวลานับแต่แกนกลางโมเลกุลเริ่มหดตัวจนถึงการขับไล่แก๊สออกไปนี้กินเวลาโดย ประมาณไม่เกิน 1-3 ล้านปี โดยที่แก๊สในแกนกลางของเมฆประมาณ 30-40% เท่านั้นที่จะก่อตัวขึ้นเป็นดาวฤกษ์ กระบวนการดูดและกระจายแก๊สจึงทำให้กระจุกดาวเสียหายค่อนข้างมาก ซึ่งทำให้มันสูญเสียดาวฤกษ์ไปมากหรือบางครั้งก็สูญเสียไปทั้งหมด[5] กระจุกดาวทุกแห่งล้วนต้องประสบการสูญเสียมวลในวัยเยาว์ไปเป็นจำนวนมากขณะที่ องค์ประกอบส่วนหนึ่งผ่านพ้นช่วงเวลาอายุน้อยเพื่อดำรงอยู่ต่อไป ดาวฤกษ์อายุน้อยบางดวงที่หลุดออกจากกระจุกดาวต้นกำเนิดของตนก็กลายไปเป็น ส่วนหนึ่งของสมาชิกดาวฤกษ์ในสนามของดาราจักร การที่ดาวฤกษ์จำนวนมาก (แม้ไม่ใช่ทั้งหมด) ล้วนเป็นส่วนหนึ่งของกระจุกดาวไม่แห่งใดก็แห่งหนึ่ง ดังนั้นเราอาจมองว่ากระจุกดาวเป็นส่วนหนึ่งของโครงสร้างพื้นฐานของดาราจักร เหตุการณ์ที่แก๊สกระจายตัวอย่างรุนแรงเพื่อกำหนดรูปร่าง (และทำลาย) กระจุกดาวจำนวนมากเมื่อยามถือกำเนิดนั้นได้ทิ้งร่องรอยเอาไว้ในโครงสร้าง ดาราจักรทั้งในแง่ของรูปลักษณ์และพลังงานจลน์[6]
การที่กระจุกดาวสองแห่งหรือมากกว่านั้นมีกำเนิดมาจากเมฆโมเลกุลชุดเดียวกันถือเป็นเรื่องปกติ ในเมฆแมเจลแลนใหญ่ ทั้งกระจุกดาว Hodge 301 และ R136 ต่างก่อตัวขึ้นมาจากกลุ่มแก๊สในเนบิวลาบึ้ง ขณะที่ในดาราจักรของเราเองเมื่อตรวจสอบลักษณะการเคลื่อนตัวย้อนไปจะพบว่า กระจุกดาวสามเหลี่ยมหน้าวัว และกระจุกดาวรวงผึ้ง สองกระจุกดาวใกล้เคียงที่มีชื่อเสียงมากต่างมีกำเนิดมาจากกลุ่มเมฆเดียวกันเมื่อประมาณ 600 ล้านปีมาแล้ว[7]
ในบางครั้งหากกระจุกดาวสองชุดมีกำเนิดขึ้นพร้อมกัน มันอาจก่อตัวเป็นกระจุกดาวแฝดได้ ตัวอย่างอันเป็นที่รู้จักดีในทางช้างเผือกของเราคือกระจุกดาวแฝด h Persei และ χ Persei คาดว่ามีกระจุกดาวแฝดอยู่เป็นจำนวนกว่า 10 เท่าของจำนวนที่เราได้พบเห็นแล้ว[8] โดยมากมักพบอยู่ในกลุ่มเมฆแมเจลแลนเล็กและแมเจลแลนใหญ่ เนื่องจากเราสามารถสังเกตการณ์กระจุกดาวในระบบอื่นได้ง่ายกว่าในดาราจักรของเราเอง
สัณฐานและการแบ่งประเภท
กระจุกดาวเปิดมีหลายรูปแบบตั้งแต่แบบที่กระจัดกระจายกันอย่างมากโดยมี สมาชิกในกลุ่มเพียงไม่กี่ดวง จนถึงแบบที่เกาะกลุ่มกันพร้อมกับดาวฤกษ์นับพันดวง โดยทั่วไปลักษณะของกระจุกดาวเปิดจะมีใจกลางที่หนาแน่นเป็นเอกเทศ ล้อมรอบด้วย "โคโรนา" จางๆ จากสมาชิกอื่นๆ ในกระจุก แกนกลางมักมีขนาดตามแนวขวางประมาณ 3-4 ปีแสง โดยที่โคโรนาจะขยายออกไปจากจุดศูนย์กลางอีกประมาณ 20 ปีแสง ความหนาแน่นของดาวฤกษ์ในบริเวณใจกลางกระจุกโดยส่วนใหญ่อยู่ที่ 1.5 ดวงต่อลูกบาศก์ปีแสง (เปรียบเทียบกับความหนาแน่นของดาวฤกษ์อื่นๆ ที่อยู่ใกล้ดวงอาทิตย์ของเรามีค่าประมาณ 0.003 ดวงต่อลูกบาศก์ปีแสง) [9]การจัดประเภทของกระจุกดาวเปิดนิยมใช้แบบแผนที่คิดค้นขึ้นโดยโรเบิร์ต ทรัมเพลอร์ เมื่อปี ค.ศ. 1930 แบบแผนของทรัมเพลอร์จะกำหนดรหัสบรรยายคุณลักษณะของกระจุกดาวอยู่ 3 ส่วน โดยใช้เลขโรมันตั้งแต่ I ถึง IV ในการอธิบายการรวมกลุ่มหรือการกระจายตัวจากสนามดาวฤกษ์โดยรอบ (คือจากการรวมตัวแบบเข้มไปยังแบบอ่อน) ใช้เลขอารบิกตั้งแต่ 1 ถึง 3 ในการอธิบายช่วงความสว่างของสมาชิกในกระจุก (ตั้งแต่ช่วงแคบไปถึงช่วงกว้าง) และใช้อักษร p, m หรือ r ในการอธิบายว่ากระจุกดาวนั้นมีจำนวนดาวฤกษ์น้อย (poor) ปานกลาง (medium) หรือเยอะ (rich) นอกจากนี้มีอักษร n สำหรับแนบท้ายกรณีที่กระจุกดาวนั้นอยู่ในบริเวณของเนบิวลา[10]
ดังนั้น ตามแบบแผนของทรัมเพลอร์ กระจุกดาวลูกไก่จึงถูกจัดประเภทด้วยรหัสว่า I3rn คือมีการรวมกลุ่มอย่างเข้มมาก มีดาวฤกษ์เป็นสมาชิกอยู่เยอะและอยู่ในย่านเนบิวลา ส่วนกระจุกดาวไฮยาดีสที่อยู่ใกล้ๆ กันจัดประเภทเป็น II3m เพราะมีการกระจายตัวมากกว่าและมีสมาชิกดาวฤกษ์น้อยกว่า
จำนวนและการกระจายตัว
สำหรับในดาราจักรไร้รูปแบบจะ สามารถพบกระจุกดาวเปิดได้ตลอดทั่วไป โดยที่การรวมกลุ่มภายในกระจุกดาวจะสูงที่สุดในบริเวณที่มีความหนาแน่นของ แก๊สมากที่สุด เราไม่พบกระจุกดาวเปิดในดาราจักรชนิดรี เพราะการก่อตัวของดาวฤกษ์ในดาราจักรชนิดนี้เกิดขึ้นเป็นเวลาหลายล้านปีมา แล้ว ดังนั้นกระจุกดาวเปิดใดที่เคยมีอยู่ก็ได้กระจัดกระจายไปจนหมดแล้ว
การกระจายตัวของกระจุกดาวเปิดในดาราจักรของเราขึ้นอยู่กับอายุของมัน กระจุกดาวเปิดที่มีอายุมากจะค่อนข้างพบได้ที่ระยะห่างจากใจกลางดาราจักรค่อน ข้างมาก ยิ่งใกล้ใจกลางดาราจักรมาก แรงดึงดูดระหว่างดาวก็ยิ่งแรง ทำให้อัตราการกระจายตัวของกระจุกดาวเพิ่มมากขึ้น เช่นเดียวกับเมฆโมเลกุลยักษ์ที่เป็นสาเหตุการกระจายตัวของกระจุกดาวก็มีความ เข้มข้นในย่านในของดาราจักรสูงกว่า ดังนั้นกระจุกดาวที่อยู่ในย่านในของดาราจักรจึงมีแนวโน้มที่จะกระจายตัวออก ไปมากนับแต่ยังมีอายุน้อยๆ ไม่เหมือนกับกระจุกดาวที่อยู่ในย่านนอก[13]
องค์ประกอบ
กระจุกดาวเปิดบางแห่งอาจมีสมาชิกเป็นดาวฤกษ์สีน้ำเงินที่อายุน้อยกว่าดวง อื่นๆ ในกระจุก เราอาจพบดาวฤกษ์สีน้ำเงินเหล่านี้ในย่านใจกลางที่หนาแน่นของกระจุกดาวทรงกลม ได้ด้วยเช่นกัน การที่มันอยู่ในย่านใจกลางจึงเชื่อว่ามันน่าจะเกิดขึ้นจากการสลายตัวของดาว ฤกษ์อื่น ทำให้เกิดเป็นดาวฤกษ์ดวงใหม่ที่มีมวลและความร้อนสูงกว่าเดิม อย่างไรก็ดี ความหนาแน่นของดวงดาวในกระจุกดาวเปิดนั้นน้อยกว่าในกระจุกดาวทรงกลม การแตกสลายของดาวฤกษ์จึงไม่อาจเป็นคำอธิบายที่สมเหตุสมผลสำหรับกรณีนี้ แต่สันนิษฐานว่ามันอาจเกิดจากปฏิกิริยาระหว่างดาวนั่นเองและทำให้ระบบดาวคู่ที่มีอยู่รวมตัวกันเข้ากลายเป็นดาวดวงเดียว[14]
สำหรับดาวฤกษ์ที่มีมวลปานกลางจนถึงค่อนข้างน้อย หลังจากที่ใช้ไฮโดรเจนหมดไปในปฏิกิริยานิวเคลียร์ฟิวชั่นแล้ว รอบนอกของดาวฤกษ์เหล่านี้จะแปลงไปเป็นเนบิวลาดาวเคราะห์แล้วจึงค่อยๆ เปลี่ยนไปเป็นดาวแคระขาว แต่แม้ว่ากระจุกดาวส่วนใหญ่จะกระจัดกระจายตัวออกไปก่อนที่สมาชิกส่วนใหญ่จะ แปรสภาพไปเป็นดาวแคระขาว ทว่าจำนวนของดาวแคระขาวที่พบในกระจุกดาวเปิดกลับต่ำกว่าที่คาดเมื่อดูจาก อายุของกระจุกดาวและการคาดการณ์การกระจายตัวของมวลดาวฤกษ์ในตอนเริ่มต้น คำอธิบายหนึ่งที่เป็นไปได้คือ เมื่อดาวยักษ์แดงแปร ขอบเขตชั้นนอกของตนไปเป็นเนบิวลาดาวเคราะห์แล้ว ก็เกิดความไม่สมมาตรขึ้นเนื่องจากการสูญเสียมวล ทำให้ดาวดวงนั้นถูก "เตะ" ด้วยความเร็วหลายกิโลเมตรต่อวินาที ซึ่งมากพอจะผลักดาวดวงนั้นออกไปจากกระจุกดาวได้[15]
กระจุกดาวเปิดจำนวนมากมีลักษณะไม่เสถียรอยู่แล้วตามธรรมชาติ โดยที่มีมวลน้อยๆ จำนวนหนึ่งมีความเร็วหนีออกจากระบบที่ต่ำกว่าความเร็วเฉลี่ยของดาวในกระจุก กระจุกดาวเหล่านี้มีแนวโน้มจะแตกกระจายออกไปในเวลาเพียงไม่กี่ล้านปี โดยมากแถบแก๊สจากกระจุกดาวซึ่งเกิดจากแรงดันการแผ่รังสีของดาวฤกษ์อายุเยาว์ ความร้อนสูงจะแผ่กระจายหนีออกไปทำให้มวลของกระจุกดาวลดน้อยลงจนทำให้เกิดการ กระจายตัวได้อย่างรวดเร็ว
กระจุกดาวที่มีมวลมากพอจะเกิดแรงโน้มถ่วงของตนขึ้นดึงดูดกันและกันขณะที่เนบิวลารอบๆ กำลังกลายเป็นไอ จะสามารถดำรงสภาพอยู่ได้เป็นเวลาหลายสิบล้านปี แต่ตลอดเวลาที่ผ่านไปกระบวนการทั้งภายในและภายนอกก็ยังคงพยายามทำให้มัน กระจายตัวออก สำหรับกระบวนการภายใน การที่สมาชิกในกระจุกดาวประจันหน้ากันมักทำให้ความเร็วของสมาชิกนั้นเพิ่ม ขึ้นจนสูงเกินกว่าความเร็วหนีจากกระจุกดาว ซึ่งส่งผลให้ "การแตกกระจาย" ของดาวสมาชิกอื่นในกระจุกค่อยๆ ลดลง
ด้านกระบวนการภายนอก ทุกๆ ช่วงครึ่งพันล้านปีกระจุกดาวเปิดมีแนวโน้มจะถูกรบกวนจากปัจจัยนอกระบบ เช่นการผ่านเข้าใกล้หรือผ่านทะลุเข้าไปในเมฆโมเลกุล แรงดึงดูดระหว่างมวลทำให้เกิดความปั่นป่วนขึ้นภายในกระจุกดาว ผลที่เกิดคือกระจุกดาวจะกลายเป็นธารดาวฤกษ์ ซึ่งดาวสมาชิกไม่อยู่ใกล้กันมากพอจะเป็นกระจุกดาว แต่ยังมีความเกี่ยวเนื่องกัน เคลื่อนที่ไปในทิศทางเดียวกันด้วยความเร็วพอๆ กัน ระยะเวลาที่กระจุกดาวถูกทำให้ปั่นป่วนนี้ขึ้นอยู่กับความหนาแน่นดาวฤกษ์ใน ช่วงเริ่มต้น ยิ่งกระจุกดาวมีความหนาแน่นมากก็จะใช้เวลานานมากกว่า ประมาณค่าครึ่งชีวิตของกระจุกดาว คือจำนวนสมาชิกนับแต่เริ่มต้นครึ่งหนึ่งแตกกระจายหรือสลายไป อยู่ในราว 150-800 ล้านปีขึ้นกับความหนาแน่นเริ่มต้นของกระจุกดาวนั้น[16]
หลังจากที่กระจุกดาวสูญเสียแรงดึงดูดระหว่างกันไปแล้ว ดาวสมาชิกจำนวนมากอาจยังคงเคลื่อนที่ผ่านห้วงอวกาศไปด้วยวิถีเดียวกันอยู่ ซึ่งเราเรียกลักษณะเช่นนี้ว่า ชุมนุมดาว หรือ กระจุกดาวเคลื่อนที่ หรือ กลุ่มเคลื่อนที่ ดาวสุกสว่างหลายดวงที่บริเวณ "ก้านกระบวย" ของกลุ่มดาวหมีใหญ่เป็นสมาชิกดั้งเดิมของกระจุกดาวเปิดแห่งหนึ่งซึ่งปัจจุบันรวมตัวกันอยู่อย่างหลวมๆ เป็นชุมนุม ในกรณีนี้กลุ่มดาวหมีใหญ่เองก็เป็น "กลุ่มเคลื่อนที่" เมื่อเวลาผ่านไปความเร็วสัมพันธ์ของดาวสมาชิกจะค่อยๆ แตกต่างกันมากขึ้น ทำให้เห็นดาวเหล่านี้แยกกระจัดกระจายออกห่างจากกันไปในดาราจักร โครงสร้างกระจุกดาวที่กว้างขึ้นไปจะเรียกว่าเป็น "ธาร" ซึ่งสันนิษฐานได้จากดาวฤกษ์ที่ไม่มีความเกี่ยวพันกันแต่กลับมีความเร็วและ อายุใกล้เคียงกัน
การศึกษาวิวัฒนาการของดาว

การพล็อตกระจุกดาวสองแห่งบนไดอะแกรมของเฮิร์ตสปรัง-รัสเซลล์ กระจุกดาว NGC 188 มีอายุมากกว่า จะมีจุดหักเหออกจากแถบลำดับหลักต่ำกว่า M67
เนื่องจากดาวฤกษ์ในกระจุกดาวหนึ่งๆ มักมีระยะห่างจากโลกค่อน ข้างใกล้เคียงกันและมีอายุพอๆ กัน มีกำเนิดมาจากต้นกำเนิดแหล่งเดียวกัน ความแตกต่างของระดับความสว่างปรากฏระหว่างสมาชิกกระจุกดาวเหล่านั้นจึงมี เหตุมาจากมวลที่แตกต่างกันเท่านั้น ข้อเท็จจริงนี้ทำให้กระจุกดาวเปิดมีประโยชน์อย่างมากในการศึกษาวิวัฒนาการ ของดวงดาว เพราะการเปรียบเทียบดาวดวงหนึ่งกับดาวอีกดวงหนึ่งในกระจุกดาวเดียวกัน ค่าตัวแปรส่วนใหญ่ที่อาจแตกต่างกันนั้นก็เป็นค่าคงตัวแล้ว
การศึกษาเกี่ยวกับลิเธียมและเบอริลเลียมที่ มีอยู่อย่างมากมายมหาศาลในดาวต่างๆ ของกระจุกดาวเปิดเป็นกุญแจสำคัญที่ทำให้เราเข้าใจวิวัฒนาการของดาวและโครง สร้างภายในของมันได้เป็นอย่างดี โดยที่นิวเคลียสไฮโดรเจนไม่อาจกลายไปเป็นฮีเลียมได้จนกว่าอุณหภูมิจะสูงถึง 10 ล้านเคลวิน ลิเธียมกับเบอริลเลียมจะแตกตัวที่อุณหภูมิเพียง 2.5 ล้านเคลวินและ 3.5 ล้านเคลวินตามลำดับ หมายความว่าปริมาณแก๊สทั้งสองชนิดนี้จะมีมากหรือน้อยขึ้นอยู่กับปริมาณของ ส่วนผสมและปัจจัยต่างๆ ที่ล้อมรอบดาวนั้นๆ เมื่อเราศึกษาปริมาณแก๊สของดาวฤกษ์ในกระจุกดาวเปิดเดียวกัน ตัวแปรอื่นๆ เช่นอายุของดาวและองค์ประกอบทางเคมีก็จะมีค่าเท่ากัน
ผลการศึกษาพบว่าปริมาณองค์ประกอบเบาเหล่านี้มีอยู่น้อยกว่าที่คาดการณ์ ไว้ในแบบจำลองวิวัฒนาการของดาวฤกษ์ ซึ่งยังไม่อาจเข้าใจว่าเหตุใดจึงเป็นเช่นนั้น เหตุผลหนึ่งที่เป็นไปได้คือ การพาความร้อนในบรรยากาศของดาวฤกษ์อาจสูงเกินคาดไปในย่านที่รังสีมีอิทธิพล สูงกว่าการเคลื่อนของพลังงานตามปกติ[17]
กระจุกดาวเปิด กับบันไดระยะห่างของจักรวาล
การสามารถระบุระยะห่างระหว่างวัตถุทางดาราศาสตร์มีความสำคัญในการทำความ เข้าใจวิวัฒนาการของมัน ทว่าวัตถุเหล่านี้อยู่ห่างกันมากจนการระบุตำแหน่งและระยะห่างโดยตรงไม่ สามารถทำได้ การคำนวณระยะห่างในทางดาราศาสตร์จึง อาศัยวิธีการทางอ้อมหรือบางครั้งก็อาศัยการวัดความสัมพันธ์กับวัตถุอื่นใกล้ เคียงที่สามารถตรวจวัดระยะห่างได้ การวัดระยะห่างของกระจุกดาวเปิดต้องใช้วิธีการโดยอ้อมเหล่านี้การวัดระยะห่างของกระจุกดาวเปิดที่ใกล้ที่สุดสามารถทำได้สองวิธี วิธีแรกคือการวัดค่าพารัลแลกซ์ของ ดาว (เป็นการวัดความเปลี่ยนแปลงของตำแหน่งปรากฏเมื่อผ่านช่วงเวลาหนึ่งปี เมื่อโลกเคลื่อนที่จากตำแหน่งเดิมไปรอบดวงอาทิตย์ครบหนึ่งรอบ) วิธีนี้ใช้ได้กับกระจุกดาวเปิดที่อยู่ใกล้ๆ เช่นเดียวกับการวัดระยะห่างของดาวฤกษ์เดี่ยวโดยทั่วไป กระจุกดาวบางแห่งเช่นกระจุกดาวลูกไก่ กระจุกดาวสามเหลี่ยมหน้าวัว ซึ่งอยู่ในระยะ 500 ปีแสง เป็นระยะที่ใกล้พอจะใช้วิธีการเช่นนี้ได้ ผลที่ได้จากการตรวจวัดของดาวเทียมฮิปปาร์คอส (Hipparcos) มีความแม่นยำดีพอควรสำหรับกระจุกดาวหลายๆ แห่ง[18]
วิธีวัดระยะห่างอีกวิธีหนึ่งเรียกว่า กระบวนการกระจุกดาวเคลื่อนที่ โดยอาศัยหลักการที่ว่า ดาวฤกษ์ในกระจุกดาวมีลักษณะการเคลื่อนที่ผ่านอวกาศที่เป็นอันหนึ่งอันเดียวกัน การวัดการเคลื่อนที่เฉพาะของสมาชิกในกระจุกดาวและตรวจสอบตำแหน่งปรากฏของมันบนท้องฟ้าจะทำให้ทราบถึงจุดที่เส้นทางบรรจบกัน เราสามารถคำนวณความเร็วเชิงรัศมี ของสมาชิกในกระจุกดาวได้จากการตรวจวัดการเคลื่อนของดอปเปลอร์ผ่าน สเปกตรัมของดาว เมื่อทราบทั้งความเร็วเชิงรัศมี การเคลื่อนที่เฉพาะ และระยะห่างเชิงมุมของกระจุกดาวไปยังจุดบรรจบของมันแล้ว ก็สามารถใช้ตรีโกณมิติคำนวณ ระยะห่างของกระจุกดาวได้ กระจุกดาวสามเหลี่ยมหน้าวัวเป็นที่รู้จักดีสำหรับการคำนวณระยะห่างด้วยวิธี นี้ ซึ่งได้ผลออกมาว่ามันอยู่ห่างออกไป 46.3 พาร์เซก[19]
เมื่อสามารถคำนวณระยะห่างของกระจุกดาวใกล้เคียงเราได้แล้ว เราสามารถใช้เทคนิคเดียวกันนี้กับการคำนวณหาระยะห่างของกระจุกดาวอื่นที่ไกล ออกไปอีก โดยการจับคู่กระจุกดาวบนแถบลำดับหลักในไดอะแกรมของเฮิร์ตสปรัง-รัสเซลล์ ระหว่างกระจุกดาวที่ทราบระยะห่างแล้วกับกระจุกดาวที่อยู่ไกลออกไป แล้วประเมินระยะห่างระหว่างกระจุกดาวทั้งสอง กระจุกดาวเปิดที่อยู่ใกล้เราที่สุดคือกระจุกดาวสามเหลี่ยมหน้าวัวหรือกระจุก ดาวไฮยาดีส ขณะที่ชุมนุมดาวที่ประกอบด้วยดาวส่วนใหญ่ในกลุ่มเคลื่อนที่หมีใหญ่มี ระยะห่างประมาณครึ่งหนึ่งของระยะห่างของไฮยาดีส แต่ชุมนุมดาวไม่เหมือนกับกระจุกดาวเปิดเพราะดาวฤกษ์ในกลุ่มไม่ได้มีแรงดึง ดูดเชื่อมโยงระหว่างกัน กระจุกดาวเปิดที่ไกลที่สุดเท่าที่รู้จักในดาราจักรของเราคือกระจุกดาว Berkeley 29 อยู่ห่างออกไปประมาณ 15,000 พาร์เซก[20] นอกจากนี้ยังสามารถตรวจพบกระจุกดาวเปิดได้ง่ายในดาราจักรอื่นๆ ในกลุ่มท้องถิ่นของเราด้วย
ศาสตร์ในการประเมินระยะห่างของกระจุกดาวเปิดมีความสำคัญอย่างยิ่งในการ ปรับแต่งค่าโดยละเอียดของความสัมพันธ์ระหว่างช่วงเวลากับความส่องสว่าง สำหรับดาวแปรแสง เช่นดาวแปรแสงชนิดเซเฟอิดและชนิดอาร์อาร์ไลรา ซึ่งจะทำให้สามารถใช้ดาวเหล่านี้เป็นเทียนมาตรฐานได้ เราสามารถมองเห็นดาวส่องสว่างเหล่านี้จากระยะที่ไกลมากๆ และสามารถใช้เพื่อตรวจสอบวัตถุที่อยู่ไกลออกไปอีกในดาราจักรอื่นซึ่งอยู่ใน กลุ่มท้องถิ่นของเราได้
ไม่มีความคิดเห็น:
แสดงความคิดเห็น